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Abstract—In mobile social networks, mobile users may help
each other transfer contents when they move and meet each other.
In this paper, we consider a mobile publish-subscribe network
in which a mobile user (i.e., a content source) incentivizes other
users (i.e., messengers) to forward its content by transferring en-
ergy to them. The messengers can utilize the received energy for
content forwarding and/or their own use. From the perspective
of a rational content source, to optimize the content delivery
performance, we formulate the problem of energy charging
and content transferring as a Markov decision process (MDP),
a framework for decision making in stochastic systems. The
objective is to maximize the expected utility in terms of the benefit
gained by the content source from delivering the content and cost
from energy consumption and transfer. The solution to the MDP
is proved to be a threshold policy. Performances of the MDP-
based scheme are examined in different system scenarios. The
numerical results show that the MDP-based scheme outperforms
the conventional baseline schemes.

Index Terms—Wireless energy charging, mobile publish-
subscribe network, Markov decision process.

I. INTRODUCTION

In distributed mobile social networks, mobility of users
can be used to transfer contents [1]. A publish-subscribe
network [2] is one typical form of the mobile social network,
where contents are transferred unidirectionally from sources
(i.e., publishers) to destinations (i.e., subscribers) directly or
with the help of relay nodes, which can find its applications in
systems such as vehicular networks where traffic information
messages are disseminated from fixed stations (i.e., content
sources) to vehicles and pedestrians. By successfully received
the contents, the content sources will be rewarded. A content
source can transfer its content to a mobile router or a mes-
senger. The messenger moves and forwards the content to the
destination when they meet each other. Typically, the content
source will choose the messenger that is socially close to the
destination because it is likely that the messenger will meet
the destination and be able to deliver the content efficiently.
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Similarly, the messenger will be willing to spend its resource
to help the content source if it has a social relationship.
However, without social relationship, an incentive mechanism
has to be employed to motivate the messengers to participate in
the mobile social networks and to help content sources deliver
the content. An incentive can be money that the content source
pays to the messengers. However, paying money becomes
challenging in practice as it requires sophisticated and secure
infrastructure to support. Alternatively, energy is a scarce and
important resource in a mobile network environment. With the
advancement of energy transfer and charging techniques, e.g.,
inductive coupling and magnetic resonant coupling, it becomes
possible to use energy as an incentive in the mobile publish-
subscribe network. However, energy is also limited for the
content source, and thus it has to be optimized for performance
and cost.

We consider the distributed mobile publish-subscribe net-
works supported by wireless energy charging.1 The content
source generates contents and stores the contents in a queue.
The content source can forward the content to a messenger
together with the energy as an incentive when they meet each
other. The messenger uses the energy for content delivery, e.g.,
to store the content, to search, and to forward the content to
the destination. The content source optimizes energy replen-
ishment from wired or wireless chargers and energy transfer
to messengers. Thus, the content source has to consider the
following factors. Firstly, the receiving energy from different
chargers may cost the content source differently. Secondly, the
capability of messengers to deliver the content is different. For
example, some messengers are likely to meet the destination
more frequently. After all, the mobility of the content source is
random. Therefore, it has to optimize when to receive energy
from the charger and which messenger to forward the content
and energy to. In this paper, we propose a Markov decision
process (MDP) approach to model the content delivery of
the content source and messengers in the distributed mobile
publish-subscribe networks. An MDP is a framework to assist
the decision maker, i.e., the content source, to observe the
system states and make decisions accordingly. By solving the
MDP, the content source obtains optimal decisions to manage
energy utilization and content delivery. In particular, there
are different energy chargers with various energy prices in

1Note that the proposed model in this paper is also directly applicable to
wired charging.
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the network for the content source to replenish energy. There
are also messengers with different probabilities of successful
content delivery. The content source makes its decision by
observing the current system state of the contact, energy
storage, and the contents in the queue so that the utility is
maximized.

The contributions of this paper are summarized as follows:
• We propose the concept of an energy incentive in mobile

publish-subscribe networks. This is a novel incentive
mechanism for mobile nodes to help each other forward
contents, improving the network performance. However,
because of intermittent energy replenishment from the
chargers and energy transfer to messengers, the energy
management issues in such mobile publish-subscribe net-
works needs to be reconsidered.

• We develop an MDP model for the content source to
optimally manage energy charging content delivery. In
particular, the content source makes decisions both on the
energy charging and content forwarding to the messenger
to maximize the expected utility.

• We study the structure of the optimal decisions of energy
charging and content delivery obtained from the MDP
model, and prove that the optimal MDP policy obtained
is a threshold policy.

• We develop a partial iteration algorithm for the con-
tent source to make decisions, given the existence of a
threshold policy. The proposed partial iteration algorithm
can yield the near-optimal performance with substantially
reduced complexity in practical systems, compared with
the classical algorithm.

The rest of this paper is organized as follows. We review
related work in Section II. The system model of the dis-
tributed mobile publish-subscribe network with energy transfer
is described in Section III. Section IV presents the Markov
decision process (MDP) formulation for the content source.
The solution method of MDP is discussed in Section V. In
Section VI, the existence of threshold policy in the optimal
policy solved from the MDP model is proved. Based on the
threshold policy, a partial iteration algorithm as an approxi-
mation decision making scheme is also proposed. Numerical
results are presented in Section VII. Section VIII concludes
this paper.

II. RELATED WORK

A. Mobile Publish-Subscribe Networks

The authors in [1] review the concept of mobile social net-
works, as well as survey their architectures and applications.
In distributed mobile social networks, content dissemination
processes can be done by opportunistic contacts [1]. Relays
have an important role in mobile social networks in helping
other mobile nodes forward and deliver contents. According
to [3], the contact rate to content destinations is an essential
quality of a relay. In publish-subscribe social networks, the so-
cial relationship and metrics has to be taken into account when
performing content delivery [4]. In [5], a virtual “flea market”
is proposed for vehicular networks to publish and disseminate
query information generated by mobile devices (e.g., vehicles).

With the feature of vehicle mobility, query information can
be transferred to destinations (i.e., subscribers) by opportunis-
tic vehicle-to-vehicle contacts. The authors in [6] propose
a hybrid content relaying mechanism in vehicular publish-
subscribe networks, where the relay can be infostations to
keep and forward contents. However, in [5], information
dissemination processes by vehicle-to-vehicle communications
are treated as free-of-charge processes. Similarly, users in
the discussed networks in [6] are assumed to be cooperative.
Those assumptions may not be applicable for systems with
socially selfish mobile users. Relays are introduced in [4] as
self-interested brokers when contacting and communicating
with delays, publishers, and subscribers. That is, not all
mobile nodes may want to help in content delivery as it
costs them resources, e.g., energy and spectrum usage. The
social selfishness issue is discussed in [3] that mobile nodes
may prefer the contacts with other social mobile nodes with
a strong tie [7] over those with weak ties. Based on the
social selfishness, the delivery probability of a mobile node is
measured, considering its contact rate with content destinations
as well as its willingness to forward.

Network nodes in mobile publish-subscribe networks are
mobile devices relying on battery power. Therefore, their
energy management issues become critical. In [8], the authors
use a continuous Markov model to model the opportunistic
forwarding of contents. It is shown that, in two-step and
epidemic forwarding, a threshold-type policy is the best policy
to achieve the highest successful content transfer probability.
In [9], peer-to-peer data dissemination in a mobile ad-hoc
environment is characterized by three resource constraints,
including energy, communication bandwidth, and storage. By
imposing the constraints on these resources jointly, an algo-
rithm is proposed to improve the node throughput compared
with two existing approaches. In [10], a two-hop system, i.e., a
source-relay-destination structure, of a typical mobile publish-
subscribe network was studied. The random energy harvesting
is considered in the system. The objective is to maximize the
transferred contents within a certain period, i.e., throughput.

B. Wireless Energy Charging

Wireless energy charging has been introduced as a method
to supply energy for mobile systems [11].

The feasibility of wireless energy charging has been studied.
For example, for near-field wireless charging, Qi is introduced
as an interface standard [14]. For Qi-compliant devices, 5W
energy can be charged with the distance up to 4cm. For
far-field wireless charging efficiency, RF-to-DC conversion
efficiency can reach 50% [15]. In [13], a prototype for wireless
sensor networks that harvest ambient RF energy is proposed.
From the experiments, 20µW power can be harvested from a
TV tower located 6.6km away over the UHF band. Compared
to ambient light power as an alternative wireless energy
source, the RF energy harvesting is 1% energy efficiency [16].
However, it can work without light, e.g., for lowlight indoor
environments or at night. The experiments have been done
in [17] to measure the RF transferred power. The results show
that, with a WiFi AP transferring energy via 2.4GHz ISM
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band, the corrected average power received at the distances
of 2m and 10m can be 0.052µW and 0.011µW, respectively.
A mobile phone working at 0.5W can achieve the power
densities of 40mW/m2, 1.6mW/m2, and 0.4mW/m2 at the
distances of 1m, 5m, and 10m [18], respectively. A commercial
wireless energy charging system has been launched [12],
which can support battery-less mobile receivers to have 3.3V
system output voltage. Further, battery-less mobile devices are
surveyed in [11].

Wireless energy charging and information transfer are both
in the form of electromagnetic waves. As a result, energy
and information can be transferred simultaneously in the
same channel, depending on whether the received signal is
processed by the energy harvester or the information decoder
of the receiver [19]. Practically, two patterns of simultaneous
energy and information transfer are proposed, as in [19], [20]
and [21], including a time switching pattern where each time
slot is dedicated to energy transfer or infomation transfer only,
and a power splitting pattern where the received signal is
splitted in to two parts, which are received as energy and
decoded as information at the same time. Large-scaled wireless
networks are discussed in [20], where relays may exist for
a cooperative energy and information transfer scheme. The
mobile nodes in [20] are distributed in spatial Poisson process.
However, mobility and contact issues of mobile nodes are not
adequately considered.

C. Performance Optimization and Markov Decision Process
A Markov decision process (MDP) [22] is widely applied

to model the decision making and obtain an optimal policy
in mobile networks. In a vehicular delay-tolerant network
(VDTN), which is a special form of mobile social networks,
an MDP model is introduced for the mobile router to decide
whether to forward a content or not [23]. A constrained MDP
(CMDP) is employed in [24] to optimize the profit earned
by a content provider (i.e., publisher) in terms of maximized
number of users to receive fresh contents.

With the emerging wireless energy charging techniques, the
optimization can be performed for energy replenishment of
mobile nodes. For example, in [25], because wireless energy
is randomly harvested, the mobile node has to balance between
being idle and sensing the channel, which consumes energy.
An MDP is formulated and solved to obtain the mode switch-
ing policy. In [26], an MDP is developed to obtain the policy
to decide on data transmission given random data generation
and energy harvesting processes so that the average delay of
data transmission is minimized. The application of an MDP in
a body sensor network is discussed in [27]. The MDP takes
the energy state of the battery of a sensor node and charging
condition to determine an action of different transmission (i.e.,
reporting) modes. The objective is to maximize the ratio of all
the events correctly reported. However, those aforementioned
systems have not taken advantages of wireless energy charging
in mobile networks.

To the best of our knowledge, in the existing literature,
the optimal wireless energy charging and content transferring
policy of content providers in publish-subscribe mobile net-
works are not studied. This paper extends our early work [28]

by considering a threshold policy. Furthermore, the low-
complexity algorithm is newly proposed.

III. SYSTEM MODEL

We consider a distributed mobile publish-subscribe network
with the energy transfer capability, e.g., supported by wireless
charging techniques, as shown in Fig. 1. The network is
composed of energy chargers, a content source, mobile content
messengers, and a content destination. In the network, the
content source visits different locations and makes a contact to
a charger or messenger when they meet each other. However,
in some cases, the content source may not meet the content
destination directly and has to utilize a messenger for the con-
tent delivery. For the content source, the set of contact states
is denoted by C = 0, 1, . . . , C. The contact state determines
whom the content source is currently visiting or encountering
with. We assume that each contact state corresponds to each
of a charger or messenger only. Therefore, the transitions
of contact states indicate the mobility pattern of the content
source. There are N energy chargers in the network. When
the content source visits the charger, the content source can
decide to charge and receive energy from the charger. The
charger requests the content source to pay for the energy with
the price πCH(C) per unit of energy if the content source
decides to charge energy. Here, the price is associated with
the contact state C of the content source.

Charger

Charger

Charger
Content 
source

Messenger

Messenger

Messenger

Sink

Move TransferCharge

Content 
queue

(contacting)
(contacting)

Fig. 1: System description.

The content source can generate new contents. The gen-
erated contents will be stored in the queue of the content
source. The maximum capacity of the queue is Q contents.
The content source aims to deliver the contents to the desti-
nations, called sinks. There are M content messengers in the
network that can assist to relay and deliver contents. pm(C) is
defined as the probability that messenger m whom the content
source is contacting will successfully deliver the content to
the sink. When the content source meets a messenger, the
content source can decide to forward contents in the queue
to the messenger. Simultaneously, δ units of energy will be
transferred to the messenger as a compensation to support the
messenger to assist the content delivery2. This content and
energy transfer can be performed over the same interface, e.g.,

2Here, the energy transfer loss can be taken into account. In this case, one
unit of energy that the content source receives from the charger is defined
as x + ε, where x is the amount of energy that is actually received by the
messenger and ε is the amount of energy loss.
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TABLE I: Notation descriptions.

Notation Definition
S = (C,Q, E) Composite state of a content source, including its

contact state, queue state, and energy storage state
A ∈ {0, 1, 2} Possible action of a content source
PS(S,S′|A) Transition probability from compound state S to

state S′ when action A is taken
S Transition matrix of compound state S

πCH(C) Price of charging energy at contact state C
pm(C) Content delivery probablity of messenger m at

contact state C
δ Energy transferred from a content source to a

messenger
F (S|A) Immediate utility to a content source at state S

when action A is taken
H(S|A) Utility (not optimized) of a content source works

from the current system state S
U(S) Optimal utility of a content source works from

the current system state S

using the techniques of simultaneous wireless information and
power transfer (SWIPT) as in [19]. Alternatively, they can be
simply performed over wired connection. The messenger then
carries and moves to deliver the content to the corresponding
sink.

Due to the movement and energy dissipation, energy trans-
ferred to the content messenger m will be consumed with the
rate of νm. After the transferred energy is exhausted before the
sink is met, the content will be discarded by the messenger,
and the content delivery fails. Note that we consider the energy
used only for the content transfer which is the main focus of
this paper. The energy used for running mobile applications
and miscellaneous communication by the mobile source is a
separate part and will not be considered in the optimization.
For the δ units of transferred energy, the content delivery to the
sink will be successful in the duration of δ

νm
starting from the

moment of content and energy arrival at the messenger. This
is defined as the energy depletion time of δ energy units at the
messenger. To calculate the probability of successful delivery
by the messenger, we assume that the time duration before
the energy is completely depleted, i.e., depletion time, to be
random and modeled as a phase-type distribution [29]. The
phase-type distribution is a relatively general model, which
can be employed to model exponential and hyper-exponential
distributions. In this case, the probability that the messenger
m can successfully meet and deliver the content to the sink
before the energy depletion happens is as follows:

pm(C) = 1− ψme
δ
νm

Sm~1. (1)

By definition of phase-type distribution [29], ψm is an initial
probability row vector, Sm is a subgenerator matrix, and ~1
is a vector of ones with an appropriate size. The phase-
type distribution has been used as a generic model of user
mobility [30].

With the aforementioned system model, the content source
has to make a decision to keep idle, charge energy, or transfer
contents (with energy transferred as a compensation) to the
contacted messenger. Some system parameters and notations
are summarized as in Table I.

IV. OPTIMIZATION MODEL

We formulate a Markov decision process (MDP) model for
the content source. The MDP model includes the following
parameters: the system states of the content source, transition
matrices of the states, the actions, and the corresponding
reward/utility from taking the actions. By optimally solving
the MDP, the decision maker, i.e., the content source, can ob-
serve or calculate the parameters and make optimal decisions
accordingly to maximize the expected utility.

A. State Space and Action Space

The state space of the MDP model is defined as S = {S =
(C,Q, E)}, where C ∈ C. C = {0, 1, . . . , C} represents the
set of contact states. The contact state indicates the current
meeting event of the content source in the network, i.e.,
with what type of components the content source is currently
meeting with3. The set of contact states is defined as C =
CØ ∪CCH ∪CMG ∪CSN , where CØ, CCH , CMG, and CSN
are the sets of states indicating the content source to be alone,
to meet with an energy charger, to meet with a messenger,
and to meet with the destination, respectively. We assume
that the content source does not meet with an energy charger
and messenger at the same time, i.e., CCH ∩ CMG = Ø.
In this work, we consider that the content source contacts
one charger/messenger at a time. This is the scenario that
only the cheapest charger or the messenger which is most
probably to successful deliver the content will be chosen
in the case of multiple accessible chargers/messengers. Q
represents the current queue state of content source, where
Q ∈ Q = {0, 1, . . . , Q}. E is the energy level or energy state
of the content source, where E ∈ E = {0, . . . , E}. The energy
level indicates the amount of energy unit in the battery. E is
the maximum capacity of the battery.

The content source takes an action in a time-slotted fashion.
Each time slot is called a decision period. The action space is
defined as A = {0, 1, 2} where A = 0 represents the action
of being idle (i.e., not charging energy and not transferring
content), A = 1 represents the energy charging action, and
A = 2 represents that the content in the queue is transferred
to the messenger for delivery. To incentivize the content
messenger to relay the transferred content, certain units of
energy will be transferred to the messenger as well.

B. Transition Matrices

In the MDP model, the system state transits from the current
state S = (C, E ,Q) to the next state S ′ = (C′, E ′,Q′). In the
following, we present the transition matrices of the proposed
MDP model.

Each row of a transition matrix corresponds to the current
state, and each column corresponds to the possible next state.
As a result, each element denotes the transition probability
from the current state (i.e., row) to the next future state (i.e.,

3The same type of system components means the components have the
same property, e.g., if a content source meets with two messengers with the
same probability of content delivery to the corresponding sink, they are treated
as the same contact state.
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column). In practical system deployments, the transition prob-
abilities in transition matrices can be derived by theoretically
modeling the state transitions, e.g., location state transitions
derived by mobility modeling as in [31] or queue state transi-
tions derived by assuming that queue content arrivals follow
Poisson distribution. On the other hand, the content source
can employ existing datasets of system states to estimate
the transition probabilities, e.g., by calculating the frequency
counts of transition processes [32] or by continually updating
the transition matrices from real time training data obtained
in an online fashion when the system is in operation [33].

1) Contact State Transition Matrix: Firstly, the transition
matrix of the contact state C is expressed as follows:

C =

 CØ,Ø CØ,CH CØ,MG CØ,SN

CCH,Ø CCH,CH CCH,MG CCH,SN

CMG,Ø CMG,CH CMG,MG CMG,SN

CSN,Ø CSN,CH CSN,MG CSN,SN

 . (2)

The transition matrix C describes the mobility of the content
source to different contact state. Each sub-matrix Cm,m′ ,
for m,m′ ∈ {Ø, CH,MG,SN} is the transition matric
corresponding to the contact state in the sets CØ, CCH , CMG,
and CSN . The element of matrix C is denoted by pCC,C′ which
is the probability of the content source to change the contact
state C in the current time slot to the state C′ in the next
time slot. Note that the transitions of contact states denote
the mobility of a mobile node, which is widely modeled as a
Markov chain, e.g., as in delay-tolerant networks (DTNs) [34],
[35].

2) Queue State Transition Matrix: There are different cases
of deriving the transition of the queue state Q. Firstly, when
the content source generates contents, the queue state can
increase. Let fa(k), k = 0, 1, . . . ,+∞ denote the proba-
bility that k contents are generated in one time slot, where∑+∞
k=0 f

a(k) = 1. In this case, the transition matrix is defined
as a (Q+ 1)× (Q+ 1) matrix Q+, as follows:

Q+ =



fa(0) fa(1) · · · fa(Q− 1)
∞∑
k=Q

fa(k)

fa(0) · · · fa(Q− 2)
∞∑

k=Q−1

fa(k)

. . .
...
1


.

(3)

Secondly, when the action to transfer is made by the content
source, one content will be transferred. Thus, the number of
contents in the queue can decrease. Note that there can still be
new contents generated in the same time slot. Here, we assume
that the transferring action is taken before the content arrivals
at the content source. The transition matrix of the queue
for this case is defined as the following (Q+ 1)× (Q+ 1)
matrix:

Q−(A) =



fa(0) fa(1) · · · fa(Q− 1)
∞∑
k=Q

fa(k)

fa(0) fa(1) · · · fa(Q− 1)
∞∑
k=Q

fa(k)

fa(0) · · · fa(Q− 2)
∞∑

k=Q−1

fa(k)

. . .
...

...

fa(0)
∞∑
k=1

fa(k)


,

(4)

for A = 2, and Q−(A) = Q+ otherwise. The first row of the
matrix indicates that there is currently no content stored in the
queue. The other rows of the matrix denote the case that the
queue has at least one content that can be transferred. After
the content in the queue is transferred, there can be a content
arrival. Note that here we assume that the content leaves the
queue of the content source if it takes the transferring action.
More reliable protocols, e.g., the content leaves the queue only
when it is successfully transferred to the sink, can be adopted
in the model with slight modification to the transition matrix
presented in (4). Due to space limit, we omit this case in our
paper.

3) Energy State Transition Matrix: When the content
source is with an energy charger, i.e., a contact state is
C ∈ CCH , and the charging action is taken, i.e., A = 1,
the energy state can increase. For each charging action, the
content source can receive at most ΓC units of energy from
charger at the location associated with the contact state C. The
probability of k energy units received by the content source
is denoted by γC(k), k = 0, . . . ,ΓC . The parameters ΓC and
γC(k), k = 0, . . . ,ΓC , can be obtained from the charger or
energy markets in the system model under consideration. The
transition matrix of the energy state in this case is denoted by
an (E + 1)× (E + 1) matrix E+.

For ΓC < E, which is the case that the maximum units
of energy arrival is less than the maximum capacity of the
battery, we have

E+ =



γC(0) · · · · · · γC(ΓC)
. . .

. . .
γC(0) · · · · · · γC(ΓC)

γC(0) · · ·
∑1
k=0 γC(ΓC − k)

. . .
...
1


.

(5)

For ΓC ≥ E, we have

E+ =


γC(0) · · · · · ·

∑ΓC−E
k=0 γC(ΓC − k)

γC(0) · · ·
∑ΓC−E+1
k=0 γC(ΓC − k)

. . .
...
1

 . (6)

When the content source takes the action to transfer a
content from its queue, δ ∈ {1, . . . , E} units of energy will
be transferred to the content messenger together as a com-
pensation of content delivery to the destination. Considering
the energy efficiency, we assume that at least one unit of
energy will be transferred. In this case, the energy state E
of the content source will decrease. The transition matrix of
the energy state is expressed an (E + 1)× (E + 1) matrix E−

as follows:

E− =


I(δ+1)×(δ+1)

1
. . .

1 01×δ

 , (7)

where 01×δ is a row sub-matrix of zeros. The sub-matrix
I(δ+1)×(δ+1) is an identity matrix with the dimension of
(δ + 1) × (δ + 1), which indicates that the stored energy in
the content source is less than δ, and thus is not enough for
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performing further content delivery. The energy state remains
the same.

4) Overall System State Transition Matrix: The transition
matrix of the current composite state (E ,Q) and the next
composite state (E ′,Q′) is derived as follows:

W(S,A) =

 Q+ ⊗E+, C ∈ CCH ,A = 1,
Q− ⊗E−, C ∈ CMG,A = 2, δ ≤ E ,
Q+ ⊗ I, otherwise,

(8)

where ⊗ is the Kronecker product.
• The first condition is for the case that the charging action

is taken while the content source is with a charger. Here,
the energy state can increase.

• The second condition is for the case that, given there
is enough energy δ to be transferred as an incentive,
the content source takes the content (as well as energy)
transferring action when it is contacting a messenger.

• The last condition is for the case that there is neither a
content nor energy transferred. For example, the content
source may choose to be idle and do nothing, or try
to charge without contacting an energy charger. Conse-
quently, the queue state only increases, and the energy
state remains the same. The matrix I is an identity matrix
with the dimension of (E + 1)× (E + 1).

Taking the contact state transition matrix into consideration,
the overall transition matrix of the current state S = (C, E ,Q)
to the next state S ′ = (C′, E ′,Q′) is obtained as follows:

S = C⊗W(S,A). (9)

Here, we denote PS(S,S ′|A) as the element of row S and
column S ′ in the matrix S, when action A is taken. It is the
transition probability from the current state S to the next state
S ′.

V. SOLVING THE MDP OPTIMIZATION MODEL

In this section, we first define an immediate utility function
of the content source. Then, the method to obtain an optimal
policy of the MDP model is presented.

A. Immediate Utility Function
In each decision period, the content source takes the actions

of being idle, charging, or transferring a content to the mes-
senger. A reward to the content source is defined as the utility.
The immediate utility function F (S|A), where S = (C, E ,Q),
is given as follows:

F (S|A)

=



−ωchπCH(C)Γ− ωhdχ(Q), C ∈ CCH ,A = 1,
ωtnπ

MGpm(C)− ωhdχ(Q), C ∈ CMG,A = 2, δ ≤ E ,
−∞, C /∈ CCH ,A = 1, or

C ∈ CMG,Q = 0,A = 2, or
C ∈ CMG, E < δ,A = 2,

−ωhd · χ(Q), otherwise.
(10)

• The first condition in (10) includes the cost of energy
charging from chargers. ωch and ωhd are the weights,
ωch, ωhd ∈ [0, 1]. The cost consists of two components.

– In the first component, πCH(C)Γ represents the cost
of charging Γ ∈ {0, 1, . . . ,ΓC} units energy from the

charger if the contact state (i.e., with a charger) is
C ∈ CCH . The cost is a function of the contact state
C since the energy price is different at the different
charger.

– χ(Q) in the second component is the holding cost
of all the contents in the queue at the moment. A
typical holding cost can be the delay of the contents
waiting in the queue, if the content source is sensitive
to content delay. In this case, the holding cost can
be defined as χ(Q) = Q, which is the increment of
delay in the current decision period.

• The second condition in (10) represents the profit gained
by transferring the content from the queue, i.e., A = 2,
when there are enough energy units at the content source.
In this condition, ωtn ∈ [0, 1] is the weight coefficient.
πMGpm(C) is the revenue of successfully delivering the
content with the help of the messenger for the contact
state C. As defined in (1), pm(C) is the probability that
the messenger can successfully deliver the content to the
sink (i.e., destination) before the transferred energy is
depleted.

• Note here that, as shown by the third component, the
content source is not allowed to take the charging action
if it does not contact with any charger. Likewise, it is not
allowed to transfer any content and energy if it does not
have a contact with any messenger or it does not have
enough energy in its battery. These conditions will yield
an infinite negative reward.

B. Solving the MDP Optimization Model with Bellman Equa-
tion

With the states and actions, the transition probability ma-
trices, and the immediate utility function defined, the MDP
model can be solved by the following Bellman equation [22],
[36] to obtain the optimal policy, i.e.,

U(S) = max
φ(S)

H(S|A), (11)

φ∗(S) = arg max
φ(S)

H(S|A), (12)

H(S|A) = F (S|A) + β
∑
S′∈S

PS(S,S ′|A)U(S ′). (13)

In the Bellman equation given in (11)-(13), the function
U(S) is the optimized utility from when the content source
works from the current system state S. φ(S) is defined as
a policy function φ : S 7→ A, that is the action to be
taken given the current state S . φ∗(S) denotes the optimal
policy. The essential concept of the Bellman equation is to
maximize the utility of the decision maker, i.e., the content
source, H(S|A), considering not only the current immediate
utility F (S|A), but also the discounted possible future utilities
β
∑
S′∈S PS(S,S ′|A)U(S ′). β ∈ [0, 1) is the discount factor

because of the uncertainty of the future utilities. PS(S,S ′|A)
is the transition probability from the current state S to the
possible future state S ′, which is defined by (9). The value
iteration algorithm can be applied to numerically solve the
Bellman equation [22] to obtain the optimal utility U(S).
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C. Complexity Analyses of the MDP Optimization Model

The complexity of solving the MDP with the value iteration
algorithm is O(|A| · |S|2), where |A| and |S| are the sizes
of the action space and the state space, respectively. In the
proposed system, as aforementioned, the size of state space |S|
is decided by the product of the location, energy, and content
state numbers. i.e., |C| · |Q| · |E|.

In practical systems, real time solutions of the MDP op-
timization may subject to the computational capacity of the
content source. For example, a content source can be a sensor
node, or a laptop on mobile. Two approaches can be applied
to solve the MDP optimization accordingly:

I. Given that the system states and state transitions are
already available (e.g., by theoretical approaches), MDP
solutions can be obtained in advance in an offline fashion.
The solution can be downloaded to the memory of a
mobile content source, e.g., in the form of a lookup table.
The content source only observes the current state S to
make optimal decision A without keeping past system
states.

II. Given that the system states and state transitions are
initially unknown to the content source, the content
source may traverse over a service area to explore and
collect past system data, such as system states and state
transition probabilities, e.g., contact states, for training.
After then, the collected system states and state transi-
tions are employed for forming and solving the MDP
optimization, which can be done in an online manner
when the content source has high computational capacity.
Otherwise, when the content source is not able to solve
the optimization, the collected data can be offloaded to
nearby base stations and cloud-like services for further
process, where the final MDP optimization solution will
be returned to the content source [39].

VI. STRUCTURAL RESULT OF MDP SOLUTION:
THRESHOLD POLICY

In this section, we analyze the structural result in terms of a
threshold policy of the MDP model for the content source. The
threshold policy can help reduce the complexity of solving the
MDP model. We firstly show that the action space of the MDP
model can be simplified in some scenarios. Then, we prove
that, given particular system parameters, the optimal policy
solved by the MDP model is a threshold policy.

A. Threshold Policy
The optimal solution (i.e., policy) φ∗(S) solved by the MDP

model is defined to be a threshold policy, if the following
holds:

φ∗(θ,S−θ) =


A1, for min θ � θ ≺ θthr,1,
Ai, for θthr,i−1 � θ ≺ θthr,i

∀i ∈ {2, 3, . . . , |A| − 1},
A|A|, for θ|A|−1 � θ � max θ,

(14)

where θ denotes a state having a threshold. S−θ is a tuple
of all the other states except θ. As defined in the Bellman
equation given in (11)-(13), φ∗(θ,S−θ) is the optimal deci-
sion policy. θthr,i is called as the ith threshold state of the

system state θ. From the definition of threshold policy, the
physical meaning of the threshold policy is that the action A
monotonically changes as the system state S changes.

The existence of threshold policy contributes to efficiently
solving the MDP model in the following manners. Once
the threshold policy is proved to exist, and the particular
threshold states are known, the actions corresponding to all
the other states will be fixed without further computation,
as demonstrated in (14). In particular, given any algorithm
that can directly obtain the existing threshold states, the
complexity can be reduced significantly, comparing with the
complexity of O(|A|·|S|2) when solving the Bellman equation
(11)-(13) by iterating all the system states using the value
iteration algorithm [37]. The algorithm for directly deciding
the threshold states deserves further research. However, a few
studies, such as reinforcement learning [38] and approximation
algorithms [39], have been conducted.

To prove that the optimal policy φ∗(S) in (12) is a threshold
policy, the concept of supermodularity/submodularity [40] is
applied.

Definition 1: For x ∈ X ⊆ R, y ∈ Y ⊆ R, a func-
tion f(x, y) ∈ R is supermodular in (x, y) if f(x1, y1) −
f(x1, y2) ≥ f(x2, y1) − f(x2, y2), ∀x1, x2 ∈ X,∀y1, y2 ∈
Y, x1 > x2, y1 > y2. Similarly, f(x, y) is submodular in (x, y)
if f(x1, y1)−f(x1, y2) ≤ f(x2, y1)−f(x2, y2), ∀x1, x2 ∈ X,
∀y1, y2 ∈ Y, x1 > x2, y1 > y2.

The supermodularity/submodularity property of f(x, y) is
a sufficient condition of the non-decreasing/non-increasing
monotonicity of y = arg max

y
f(x, y) [36], [40]. Specifically,

in the proposed MDP model and Bellman equation given in
(11)-(13), for a given state θ ∈ {C,Q, E}, the fact that H(S|A)
is supermodular/submodular in (θ,A) indicates that φ∗(S) is
non-decreasing/non-increasing in θ ∈ {C,Q, E}.

In the following, we prove that a structure of threshold exists
in the proposed MDP solutions.

Lemma 1: The actions of charging A = 1 and content
transferring A = 2 will never be taken at a contact state that is
without energy chargers (i.e., C /∈ CCH ) and without content
messengers (i.e., C /∈ CMG), respectively.

The proof of Lemma 1 is straightforward by definition and
thus omitted for brevity. As stated in Lemma 1, the proposed
MDP has a binary decision at each system state. The following
theorem describes a threshold policy that exists with respect to
the queue state Q. The proof of Theorem 2 is in Appendix A.

Theorem 2: Given a fixed energy state E and a contact state
C ∈ CMG, when the content holding cost (e.g., delay cost) is
zero, i.e., χ(·) ≡ 0, the optimal policy of the content source
has a threshold structure with respect to the queue state Q. In
particular, a threshold Qthr(C, E) exists that the content source
takes action A = 2 if Qi ≥ Qthr(C, E), and A = 0 otherwise.
The intuition of Theorem 2 is that if the content source has
many contents in its queue, it is likely that the content source
will be more willing to transfer the content to a messenger to
gain the profit of content delivery. In the similar manner, the
following theorems hold:

Theorem 3: Given any fixed queue state Q and a contact
state C ∈ CCH , the optimal policy of the content source is a
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threshold policy in the energy state E . In particular, a threshold
Ethr(C,Q) exists that the content source takes action A = 1
if E < Ethr(C,Q), and A = 0 otherwise.
The intuition of Theorem 3 is that if the content source has
less energy in its battery, it is likely that the content source
will receive energy from a charger. This is because the content
source has to obtain sufficient energy for the future content
transfer to gain the utility.

Let the contact states of the set CCH† (i.e., with charg-
ers) be sorted according to the energy price πCH , i.e.,
CCH† = {C1, . . . , C|CCH†|}, for πCH(Ci) ≤ πCH(Ci+1) and
i = 1, . . . , |CCH†| − 1. In particular, it is more expensive for
the content source to receive energy from a charger at the
contact state Ci+1 than at the contact state Ci. Then, we have
the following theorem.

Theorem 4: Given any fixed queue state Q, energy state E ,
and the set of contact states CCH† sorted according to the
energy price, the optimal policy of the content source is a
threshold policy in the contact state C ∈ CCH†. In particular,
a threshold CCH†thr (E ,Q) exists that the content source takes
action A = 1 if C < CCH†thr (E ,Q), and A = 0 otherwise.
The intuition of Theorem 4 is that if the content source is
meeting with a charger with a cheap energy price, it is likely
that the content source will receive energy from the charger.

Let the contact states of the set CMG (i.e., with messen-
gers) be sorted according to the contact probability pm of
a messenger to the sink, i.e., CMG† = {C1, . . . , C|CMG†|},
for pm(Cj) ≤ pm(Cj+1) and j = 1, . . . , |CMG†| − 1. In
particular, there is a higher chance the content from the
content source will be successfully delivered to the sink by
the messenger associated with the contact state Cj+1 than that
by the messenger associated with the contact state Cj . Then,
we have the following theorem.

Theorem 5: Given any fixed queue state Q, energy state
E , and the sorted set of contact state CMG† according to
the contact probability to the sink, the optimal policy of
the content source is a threshold policy in the contact state
C ∈ CMG†. In particular, a threshold CMG†

thr (E ,Q) exists that
the content source takes action A = 2 if C ≥ CMG†

thr (E ,Q),
and A = 0 otherwise.
The intuition of Theorem 5 is that if the content source is
meeting with a messenger that meets with the sink frequently,
it is likely that the content source will transfer a content to
the messenger.

The proofs of Theorem 3, Theorem 4, and Theorem 5 are
similar to that of Theorem 2 in Appendix A, and thus we omit
them for brevity.

B. Threshold Policy Based Partially Iteration Algorithm

Based on the existence of a threshold policy of the MDP
model, approximation algorithms for fast decision making can
be developed. For example, our decision making algorithm
based on the existence of threshold policy (namely FAST)
is proposed in [39]. The basic idea of the FAST algorithm
is to equally divide the state space into different parts, e.g.,
S1,S2, . . . ,Sn, where S1 � S2 � · · · � Sn for n actions in
the action space. Given the existence of a threshold policy,

only one particular action Ai will be taken for all the states
in Si.

In this paper, we extend the FAST algorithm by introducing
an approximation decision making scheme, called partial iter-
ation algorithm (PIA) for the content source to take an action
of charging, content transferring, or being idle. The algorithm
is a combination of any given myopic scheme with low
complexity and the value iteration algorithm with the existence
of threshold policy. Algorithm 1 shows the proposed PIA with
a binary action space and the threshold policy between actions
A = 0 and A = 1. The proposed PIA starts with any given
policy, e.g., obtained from FAST. Then, we randomly select a
subset of states and update the utilities corresponding to the
states in the selected subset. The utility updating is similar
to that of the value iteration algorithm [22]. However, unlike
the value iteration algorithm that iterates and updates every
state with the information of all the future possible states
until convergence, the PIA, as an approximation algorithm,
only selects a part of the system states and updates their
utilities with the knowledge of a subset of future possible
states. In particular, the term β

∑
S′∈SFi

PS(S,S ′|A)U(S ′)
in Line 7 of Algorithm 1 only includes the adjacent states
close to the current states. Based on the utilities updated by
limited information, we apply the threshold policy to choose
the actions for the rest of system states.

Algorithm 1 Partial iteration algorithm
1: procedure GENERATING THE DECISION POLICY φ : S 7→ A
2: Generate an initial policy φ0(S);
3: Randomly select a subset SU ⊆ S;
4: for each state Si ∈ SU do
5: Select a subset of future states SFi ⊂ S corresponding to

the current iterating state Si;
6: Update the utility H(S|A) for the future states in SFi :
7: H(S|A)← F (S|A) + β

∑
S′∈SFi

PS(S,S ′|A)U(S ′);

8: Select an optimal action ∀i Ai ← arg maxAH(S|A);
9: if Ai = 1 then

10: Update the policy: set φ(S)← 1, ∀S � Si;
11: else
12: Update the policy: set φ(S)← 0, ∀S ≺ Si;
13: end if
14: end for
15: return φ : S 7→ A;
16: end procedure

The algorithm starts from improving any given initial policy,
as in Line 2. Instead of iterating and updating the utilities
of all the system states using the value iteration algorithm,
Line 3 selects and updates the utility of only a part of states
(e.g., 10%). The selection of the states to be updated can be
random or iterative. For example, for |SU | = |S|, all the system
states will be updated, where SU denotes the subset of the
selected states. Unlike the Bellman equation given in (11)-
(13), which updates the utility function H(S|A) by adding the
immediate utility of the current decision period as well as all
the future states, i.e., S ′ ∈ S, the proposed PIA only performs
the update by considering a subset of the future system states,
i.e., S ′ ∈ SFi , as in Lines 5 and 7. In practice, the subset
can include the states that the content source most probably
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visits. For example, for the content source only charging one
unit of energy, given the current state S = (Ci,Qi, Ei), the
subset SFi can include the states S ′1 = (Ci,Qi, Ei) and S ′2 =
(Ci,Qi, Ei+1). The threshold policy is applied in Lines 9-12.
Since the 0-to-1 threshold policy has been proved to exist (as
a precondition to applying the algorithm), given that the action
A to the state Si is obtained as A = 1, we can postulate that
the actions corresponding to the state Si′ for Si′ � Si are all
A = 1. Similarly, given A = 0 at the state Si, the state Si′′
for Si′′ ≺ Si should have the action of A = 0.

C. Complexity Analyses of PIA

Compared to the complexities O(|A| · |S|2) and O(1) of
the MDP value iteration algorithm and the FAST algorithm,
respectively, the complexity of the PIA is O(|A|·M ·K), where
M = |SU | is the size of the subset of the selected states, and
K = max |SFi |, ∀i,Si ∈ SU , denotes the maximum number of
future states to be updated. Since computing the utility in the
PIA algorithm can be over a smaller state space, its complexity
will be smaller than that of the value iteration algorithm. For
example, if only a constant number of states close to the states
in SU are considered as future states, the complexity for the
PIA is O(|A| · |S|), which is one order lower than that of the
MDP with value iteration algorithm.

VII. NUMERICAL RESULTS

A. System Settings

1) System Parameters: We compare the performances of
different charging and content delivery schemes. Unless oth-
erwise stated, the system parameters are set as follows.
• The battery has the maximum capacity of 10 units

of energy, and that of the queue is 10 contents. New
content arrival at the content source follows the Poisson
distribution. The holding cost of contents is zero.

• There are equal numbers of chargers and messengers in
the system that the content source can contact:

– Contact state C = 0 represents that neither a charger
nor a content messenger is encountered;

– Contact states C = 1, . . . , 6 represent that the con-
tent source meets an overall number of 6 different
chargers, with the energy prices of 0.0, 1.0, 4.0, 9.0,
16.0 and 25.0, respectively.

– Contact states C = 7, . . . , 12 represent that the
content source may meet with 6 different messen-
gers. By successfully transferring a content, the
content source receives the revenue of 15.0. The
probabilities of successful content delivery by the
messengers associated with the states C = 7 and
C = 12 are 0.0 and 1.0, respectively. These are
two extreme cases that the content messenger cannot
and can always successfully deliver the content.
For C = 8, . . . , 11, the phase-type distribution of
the time to meet the sink has the following pa-
rameters: ψm =

[
1 0 0 0

]
, and Sm is an

upper bidiagonal matrix, where all the main diagonal
elements are −λ’s, and the other elements are λ. The

physical meaning of ψm and Sm is that the time to
meet the sink is an Erlang distribution E(4, λ). In
our numerical analyses, one unit of energy will be
transferred along with one content to any messenger,
i.e., δ = 1. The energy depletion rate is νm = 1.
The parameter λ = 2.30, 3.21, 4.20, 5.52 is for the
messenger C = 8, . . . , 11, which results in the
successful content delivery probabilities to be 0.2,
0.4, 0.6, and 0.8, respectively. These probabilities are
shown in Fig. 2(a).

– The content source does not directly contact the sink.
• A new content is generated in each decision period with

the probability of 0.4. The probability of successfully
receiving energy from a charger is 0.9. The discount
factor in the Bellman equation is set to 0.9.

2) Baseline Schemes and Evaluation Criteria: For compar-
ison, we consider three conventional baseline schemes.

1) A greedy (GRD) scheme: The content source takes an
action only to maximize the immediate utility of the
current decision period. The greedy scheme attempts to
achieve the global optimal action decisions by optimize
local decisions.

2) A charge-and-transfer (CAT) scheme: The content
source always charges when meeting with a charger,
and always transfers a content when meeting with a
messenger. By adopting this scheme, the content source
makes simple decisions only by observing the current
contact state.

3) A random (RND) scheme: The content source takes
the actions of energy charging and content transferring
randomly when they are possible.

To show how the existence of threshold policy can assist the
decision making process, we also compare the MDP-based
scheme with the FAST algorithm and the proposed PIA, as
discussed in Section VI-B.

We obtain and evaluate the following performance measures
of the content source:
• Expected utility: Suppose the content source start from

any initial state Sin ∈ S with a uniform distribution [33].
The expected utility is defined as U =

∑
Sin∈S

1
|S| ·

U(Sin), where U(·) is defined in the Bellman equation
given in (11)-(13).

• Charging and content transferring rates: At the system
steady state, pst(S) denotes the steady state probability
that the content source will be at the state S. The energy
charging rate of the content source is defined as αch =∑
S∈S pst(S) · I(A = 1). The content transfer rate is

defined as αmg =
∑
S∈S pst(S) · I(A = 2). Function

I(c) returns the value of one if the condition c holds, and
zero otherwise. The energy charging and content transfer
rates indicate how much the content source prefers any
charger and messenger, respectively.

B. Probabilities of Successful Content Delivery by Messengers

In Fig. 2(a), the cumulative probabilities of the phase-type
distribution of the time for a messenger to meet the sink
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Fig. 2: The probabilities of successful content delivery for (a) Different content messengers, where messengers 2-5 correspond to the contact
states C = 8, . . . , 11 of the content source, and (b) different energy consumption rates of a messenger.

before energy depletion are shown under varied parameters.
Generally, more units of energy transferred to the messenger
leads to a higher probability of successful content delivery as
shown in Fig. 2(a). Here, messengers 2-5 correspond to the
contact states C = 8, . . . , 11 and are set with the parameters
λ = 2.30, 3.21, 4.20, 5.52, respectively. The messenger with
a higher value of the parameter λ (e.g., λ = 5.52 for the
messenger 5) will meet the sink more often, and thus the
successful content delivery probability is higher.

Fig. 2(b) shows the impacts of energy consumption rate
of a messenger to the successful content delivery probability.
Clearly, the probability decreases as the energy consumption
rate νm of the messenger m increases.

C. Threshold Policy

The optimal threshold policy of the content source is shown
in Fig. 3. The policy is obtained from solving the MDP model
using the value iteration algorithm.

The threshold with respect to the energy state is shown in
Figs. 3(a) and (b). When the content source is at a charger (i.e.,
C = 1, . . . , 6), as the energy state E increases, the content
source decides to charge and receive the energy from the
charger. Basically, the content source monotonically changes
its action from being idle (A = 0) to charging (A = 1). For
example, as shown in Fig. 3(a), for C = 2, A = 1 when
E ≤ 4, and A = 0 otherwise. Similarly, Fig. 3(b) shows that,
given that the content source has a contact with a charger (e.g.,
C = 1 in this case), a threshold policy exists for each fixed
queue state Q. In the same manner, threshold policies with
respect to the contact state C and the queue state Q are shown
in Fig. 3(a) and Fig. 3(c), respectively.

In the following, we show the performance comparison
among different algorithms and schemes including the PIA
proposed in Section VI-B. In Fig. 4, we examine the impacts
of the number of the selected states for updating, i.e., |SU | in
the Algorithm 1. Basically, we vary the size of the selected
state space from 1 (i.e., one state) to 2

24 |S|,
4
24 |S|, . . . ,

20
24 |S|,

i.e., the selected state space increases, where |S| is the number
of all the system states. The initial policy is generated by the

FAST algorithm [39]. In the FAST algorithm, when the action
space is binary, the system state space is divided into two
equal parts, each of which corresponds to one of the actions.
As shown in Fig. 4, the FAST scheme achieves around 58% of
the utility of the MDP-based scheme. For the PIA, by partially
updating the utilities of some system states, the expected utility
of the content source can be improved. For example, for the
PIA, by updating only 6

24 |S| states (i.e., 25% of all the states),
the expected utility increases to around 83% comparing with
that of the MDP-based scheme. Thus, the proposed PIA offers
acceptable expected utility with much lower complexity.

D. Impacts of Battery Capacity

Fig. 5(a) shows the expected utilities obtained from the
optimal policy of the MDP model as well as baseline schemes.
The optimality of the MDP-based scheme can be observed in
terms of the maximum expected utility.

From Fig. 5(a), as the maximum battery capacity of the
content source increases from E = 2 to E = 10, the expected
utility increases. This is because the increased battery capacity
allows more energy units to be stored to support further content
transferring by the content source.

Fig. 5(b) shows the energy charging (dashed curves in
the figure) and transferring rates (solid curves) at the system
steady state. From the figure, as the battery capacity increases,
the charging rate increases, indicating that the content source
is more likely to charge at the chargers. Consequently, the
content source tends to transfer a content because it has enough
energy. However, as the battery capacity E increases above a
certain level (e.g., E = 6 in Fig. 5(b)), the energy charging
and content transferring rates stop increasing. This observation
indicates that, due to the cost of energy charging, the amount
of energy received by the content source should be limited
when adopting the MDP-based scheme. As shown in Fig. 5(c),
by employing the MDP-based scheme, the average energy
level of the content source reaches around 1.0 after the energy
capacity exceeds E = 6. That is, relatively large battery
capacity of the content source may be unnecessary because
the battery can be underutilized. Notably, the energy charging
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Fig. 3: Threshold policy for different (a) energy state E and contact state C (for queue state Q = 1), (b) states E and Q (for contact state
C = 1, i.e., meeting with a charger), (c) states E and Q (for contact state C = 8, i.e., meeting with a messenger).
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Fig. 4: Comparison of approximation algorithms with the MDP-
based scheme.

rates are always larger than the content transferring rates of
the same scheme, as shown in Fig. 5(b). This is because the
probability of successful energy transfer from a charger is 0.9.
By contrast, the action of content transfer consumes one unit
of energy. Thus, the charging rate is required to be higher than
the transfer rate.

As shown in Figs. 5(a) and (b), although the greedy scheme
may achieve a high expected utility (between the results of
FAST and PIA), a very low energy charging rate, and conse-
quently a very low content transferring rate are observed. Thus,
the greedy scheme is a conservative scheme that constricts the
action to transfer a content which may not be beneficial to the
content source.

E. Impacts of Energy Prices and Successful Content Delivery
Probabilities

We first evaluate the system performance under different
energy prices. In particular, we vary the energy prices at the
chargers. We consider nine energy price levels as shown in
Table II. The energy price of each charger increases ascend-
ingly according to the level. Fig. 6(a) shows that as the energy
prices increase, the expected utility decreases due to the cost
of energy charging.

TABLE II: Experimental cases: Different energy prices.

Energy price Energy prices when contacting chargers
level C = 1 C = 2 C = 3 C = 4 C = 5 C = 6

1 0.0 1.0 2.0 3.0 4.0 5.0
2 1.0 2.0 3.0 4.0 5.0 6.0
· · · · · ·
9 8.0 9.0 10.0 11.0 12.0 13.0

As the energy price level increases to some extent, e.g.,
after level 7, the charging cost incurred to the content source
becomes too high. In this case, the expected utility shown in
Fig. 6(a) stops falling and becomes stable when the MDP-
based scheme is adopted. This is because that the content
source tends to refuse to charge. The energy charging and
content transferring rates decrease and approach zero, as
shown in Fig. 6(b). Similarly, as shown in Fig. 6(a), the
PIA has acceptable performance metrics compared with the
MDP-based scheme, since the algorithm is partially adaptive.
For comparison, when the myopic charge-and-transfer (CAT)
scheme or the FAST algorithm is applied, the expected utility
decreases drastically. This is because the content source will
not adjust its policy to charge selectively only at the cheapest
chargers.

Fig. 7 shows that the probability of successful messenger-
sink content delivery is positively correlated with the expected
utility of the content source. We examine four cases, i.e., case
1 to 4. The energy consumption rate νm are respectively 10.0,
4.0, 1.0, and 0.2 for the four cases. That is, from case 1 to
case 4, the probability increases that the messenger can contact
the sink before the transferred energy is drained. As shown in
Fig. 7, the energy charging and content transferring rates as
well as the expected utility consistently increase.

F. Discussions on Special System Scenarios

Figs. 8(a) and (b) show the case that the content source
can only encounter one charger and one messenger in the
system. As shown in Fig. 8(a), the successful content delivery
probability of the messenger is varied from 0.0 to 1.0. When
the delivery probability is 0.0, the only messenger in the
system fails to deliver a content. In this case, the content
source halts the charging and content transferring processes.
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Fig. 5: Impacts of the maximum battery capacity E of the content source to (a) expected utility, (b) energy charging and content transferring
rates, and (c) the average energy level in the content source.
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Fig. 7: Impacts of the messenger-sink contact probability level to (a) expected utility, and (b) energy charging and content transferring rates.
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Similarly, in Fig. 8(b), the energy charging price asked by
the only charger increases from 0 to 10. It is shown in the
figure that the charging rate of the content source decreases as
the energy price increases. The energy charging and content
transferring rates approach 0 when the only charger in the
system charges unacceptable prices which the content source
cannot afford.

Fig. 8(c) shows the cases where the charging prices at
the chargers are all 0, or the profit to the content source
by successful delivery is 0. The four experimental cases are
the same as in Fig. 7. As shown in Fig. 8(c), the content
source always charges given the energy charging prices at the
charger is free. However, when the content source cannot gain
any profit by sending contents (i.e., the delivery profit always
equals 0), the content source will never charge, and thus the
content transferring rate is also 0.

VIII. CONCLUSION

In this work, we have proposed a mobile publish-subscribe
network where a content source transfers content as well as
energy to content messengers for delivering the content to the
destination. An MDP has been formulated and solved to help
the content source to optimally charge energy and transfer
contents. Moreover, we have proved that the optimal energy
charging and content transferring policy obtained from the
MDP model is a threshold policy. This structural result of the
threshold policy can simplify the decision making and solution
method of the MDP. Based on this fact, we have introduced
a partial iteration algorithm to approximate the optimal policy
but with lower complexity. The numerical results have shown
that the MDP-based scheme outperforms the baseline schemes.

APPENDIX A
PROOF OF THRESHOLD POLICY IN QUEUE STATE Q

Proof: We employ the supermodularity property of the
utility function H(S|A) to prove the structure of a threshold
in an optimal policy with respect to the queue state Q. That
is, the following inequality must hold as a sufficient condition
for the threshold policy:

[H(C, E ,Q+ 1|A = 2)−H(C, E ,Q|A = 2)]︸ ︷︷ ︸
Term L

≥ [H(C, E ,Q+ 1|A = 0)−H(C, E ,Q|A = 0)]︸ ︷︷ ︸
Term R

.
(15)

We discuss the supermodularity in different cases of the
queue state Q:

• Boundary condition cases: Q = 0, as well as Q+ 1 = Q
and,

• Non-boundary condition cases: 0 < Q < Q and 0 <
Q+ 1 < Q.

When the content source does not have enough energy to
transfer a content, A = 0 is always taken. In this case, the
threshold exists.

When there is enough energy for content transferring, i.e.,
E ≥ δ, the following cases happen. Firstly, for the non-
boundary case, equation (16) holds:

H(C, E ,Q+ 1|A = 2)−H(C, E ,Q|A = 2)
= F (C, E ,Q+ 1|A = 2)− F (C, E ,Q|A = 2)

+β
∑
C′∈C

pCC,C′
Q−Q∑
k=0

fai (k)[U(C, E − δ,Q+ k)

−U(C, E − δ,Q− 1 + k)],
= −ωhd[χ(Q+ 1)− χ(Q)]

+β
∑
C′∈C

pCC,C′
Q−Q∑
k=0

fai (k)[U(C, E − δ,Q+ k)

−U(C, E − δ,Q− 1 + k)],

(16)

and in the same manner, (17) holds:

H(C, E ,Q+ 1|A = 0)−H(C, E ,Q|A = 0)
= −ωhd[χ(Q+ 1)− χ(Q)]

+β
∑
C′∈C

pCC,C′
Q−Q−1∑
k=0

fai (k)[U(C, E ,Q+ 1 + k)

−U(C, E ,Q+ k)].

(17)

Lemma 6: Given the holding cost of contents χ(·) ≡ 0, the
following inequality holds:

U(C, E ,Q+1)−U(C, E ,Q) ≥ U(C, E+1,Q+2)−U(C, E+1,Q+1).
(18)

According to Lemma 6, which is proved in Appendix B,
the following inequality holds:

U(C, E − δ,Q+ k)− U(C, E − δ,Q− 1 + k)
≥U(C, E ,Q+ 1 + k)− U(C, E ,Q+ k), k = 0, 1, . . . , Q−Q− 1.

(19)

Lemma 7: Given the condition that the holding cost of
contents χ(·) ≡ 0, the following inequality holds:

0 ≤ U(C, E ,Q+ 1)− U(C, E ,Q)
< ωtnπ

MGpm(C)− ωhd[χ(Q+ 1)− χ(Q)] + (+∞).
(20)

According to Lemma 7, which is proved in Appendix C,
the following inequality holds:

U(C, E − δ,Q)− U(C, E − δ,Q− 1) ≥ 0. (21)

Substitute (19) and (21) into (16) and (17), the condition in
(15) holds, and the supermodularity in (15) is proved for this
case.

For the special case of Q = 0, the Term L in (15) is
expressed as follows:

H(C, E , 1|A = 2)−H(C, E , 0|A = 2)
= F (C, E , 1|A = 2)− F (C, E , 0|A = 2)

+β
∑
C′∈C

pCC,C′
Q∑
k=0

fai (k)[U(C, E − δ, k)− U(C, E − δ, k)],

= ωtnπ
MGpm(C)− ωhd[χ(1)− χ(0)] + (+∞).

(22)

For the Term R in (15), according to the upper bound prop-
erty as given in Lemma 7, i.e., U(C, E , 1 + k)−U(C, E , k) ≤
P +C+(+∞), for k = 0, 1, . . . , |Q−1|. The following chain
of inequalities holds:

H(C, E , 1|A = 0)−H(C, E , 0|A = 0)
= F (C, E , 1|A = 0)− F (C, E , 0|A = 0)

+β
∑
C′∈C

pCC,C′
Q−1∑
k=0

fai (k)[U(C, E , 1 + k)− U(C, E , k)],

≤ −ωhd[χ(1)− χ(0)] + β · (+∞).

(23)

That is, from (22) and (23), we have Term L ≥ Term R.
The supermodularity in (15) exists in the boundary condition
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Fig. 8: Actions of the content source in special system scenarios: (a) One charger and one messenger in the system only with (a) different
energy prices at the charger, and (b) different content delivery probability of the messenger. (c) Zero delivery profit or zero charging price.

case Q = 0. In the same manner, the boundary condition case
Q = Q − 1 can be proved. The supermodularity property of
the utility function H(S|A) is thus proved.

APPENDIX B
PROOF OF Lemma 6

Proof: The value iteration algorithm is employed when
solving the Bellman equation as in (11)-(13). In each iteration,
the value of the optimal utility function U(S) is updated for
all the system states S. We denote the nth iteration of U(S)
and H(S|A) to be Un(S) and Hn(S|A), respectively.

Let a1, a2, a3, and a4 be the optimal actions at the system
states (C, E ,Q+ 1), (C, E ,Q), (C, E + 1,Q+ 2), and (C, E +
1,Q+ 1), respectively, i.e.,

Un(C, E ,Q+ 1) ≥ Hn(C, E ,Q+ 1|A = a2), (24)
Un(C, E ,Q) = Hn(C, E ,Q|A = a2), (25)

Un(C, E + 1,Q+ 2) = Hn(C, E + 1,Q+ 2|A = a3), (26)
Un(C, E + 1,Q+ 1) ≥ Hn(C, E + 1,Q+ 1|A = a3). (27)

The two inequalities in (24) and (27) hold because of
optimality. From (24)-(27), the following inequality can be
derived:

[Un(C, E ,Q+ 1)− Un(C, E ,Q)]
−[Un(C, E + 1,Q+ 2)− Un(C, E + 1,Q+ 1)]

≥ [Hn(C, E ,Q+ 1|A = a2)−Hn(C, E ,Q|A = a2)]︸ ︷︷ ︸
Term A

− [Hn(C, E + 1,Q+ 2|A = a3)−Hn(C, E + 1,Q+ 1|A = a3)]︸ ︷︷ ︸
Term B

.

(28)
For simplicity of notation, we denote ∆2Un = [Un(C, E ,Q+

1)−Un(C, E ,Q)]−[Un(C, E+1,Q+2)−Un(C, E+1,Q+1)].

Induction is employed to prove Lemma 6. We firstly discuss
the non-boundary cases, where Q+ 2 ≤ Q and Q > 0.

Term A
= Hn+1(C, E ,Q+ 1|A = a2)−Hn+1(C, E ,Q|A = a2),

= Ia2=2 ·
{[
F (C, E ,Q+ 1|A = 2)− F (C, E ,Q|A = 2)

]
+β

∑
C′∈C

pCC,C′
Q−Q∑
k=0

fai (k)
[
Un(C, E − δ,Q+ k)

−Un(C, E − δ,Q− 1 + k)
]}

+(1− Ia2=2) ·
{[
F (C, E ,Q+ 1|A = 0)− F (C, E ,Q|A = 0)

]
+β

∑
C′∈C

pCC,C′
Q−Q−1∑
k=0

fai (k)
[
Un(C, E ,Q+ 1 + k)

−Un(C, E ,Q+ k)
]}
,

(29)
and

Term B
=Hn+1(C, E + 1,Q+ 2|A = a3)−Hn+1(C, E + 1,Q+ 1|A = a3),

= Ia3=2 ·
{[
F (C, E + 1,Q+ 2|A = 2)− F (C, E + 1,Q+ 1|A = 2)

]
+β

∑
C′∈C

pCC,C′
Q−Q−1∑
k=0

fai (k)
[
Un(C, E ,Q+ 1 + k)

−Un(C, E ,Q+ k)
]}

+(1− Ia3=2) ·
{[
F (C, E + 1,Q+ 2|A = 0)

−F (C, E + 1,Q+ 1|A = 0)
]

+β
∑
C′∈C

pCC,C′
Q−Q−2∑
k=0

fai (k)
[
Un(C, E + 1,Q+ 2 + k)

−Un(C, E + 1,Q+ 1 + k)
]}
.

(30)

For the initial step n = 0, since the value iteration will con-
verge [41] given an arbitrary initial value, we let U0(S) be 0
for all the states S. From (29) and (30), Term A = Term B =
0, as shown in (28), ∆2Un = Term A − Term B = 0. Thus,
∆2Un ≥ 0 holds.

Induction step: For the nth step, we suppose that ∆2Un ≥ 0
already holds. The following inequalities hold for the (n+1)th

step, given ∆2Un ≥ 0 and Lemma 7, the following chain of
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inequalities holds:

Term A
= Hn+1(C, E ,Q+ 1|A = a2)−Hn+1(C, E ,Q|A = a2),

≥ β
∑
C′∈C

pCC,C′
Q−Q−1∑
k=0

fai (k)
[
Un(C, E − δ,Q+ 1 + k)

−Un(C, E − δ,Q+ k)
]
,

≥ Hn+1(C, E + 1,Q+ 2|A = a3)
−Hn+1(C, E + 1,Q+ 1|A = a3),

= Term B.
(31)

Therefore, ∆2Un+1 = Term A− Term B ≥ 0, the (n+ 1)th

step is proved.
With Lemma 7, the boundary condition cases when Q = 0

and Q+ 2 = Q can be proved in the same manner.

APPENDIX C
PROOF OF Lemma 7

Proof: The proof can be conducted by using the induction
method similar to that of Lemma 6. We start from

Un+1(C, E ,Q+ 1)− Un+1(C, E ,Q)
≥ Hn(C, E ,Q+ 1|A = a2)− Un(C, E ,Q|A = a2),

= Ia2=2 ·
{[
F (C, E ,Q+ 1|A = 2)− F (C, E ,Q|A = 2)

]
+β

∑
C′∈C

pCC,C′
Q−Q∑
k=0

fai (k)
[
Un(C, E − δ,Q+ k)

−Un(C, E − δ,Q− 1 + k)
]}

+(1− Ia2=2) ·
{[
F (C, E ,Q+ 1|A = 0)− F (C, E ,Q|A = 0)

]
+β

∑
C′∈C

pCC,C′
Q−Q−1∑
k=0

fai (k)
[
Un(C, E ,Q+ 1 + k)

−Un(C, E ,Q+ k)
]}
,

(32)
and

Un+1(C, E ,Q+ 1)− Un+1(C, E ,Q)
≤ Hn(C, E ,Q+ 1|A = a1)− Un(C, E ,Q|A = a1),

= Ia1=2 ·
{[
F (C, E ,Q+ 1|A = 2)− F (C, E ,Q|A = 2)

]
+β

∑
C′∈C

pCC,C′
Q−Q∑
k=0

fai (k)
[
Un(C, E − δ,Q+ k)

−Un(C, E − δ,Q− 1 + k)
]}

+(1− Ia1=2) ·
{[
F (C, E ,Q+ 1|A = 0)− F (C, E ,Q|A = 0)

]
+β

∑
C′∈C

pCC,C′
Q−Q−1∑
k=0

fai (k)
[
Un(C, E ,Q+ 1 + k)

−Un(C, E ,Q+ k)
]}
.

(33)

For the non-boundary cases of Q + 1 < Q and Q ≥ 0,
Lemma 7 can be proved by induction as in Appendix B.

Then we prove the boundary case Q = Q − 1. Firstly,
the upper bound of U(C, E , Q) − Un+1(C, E , Q − 1) can be
proved with the aforementioned induction method. Secondly,
the lower bound of U(C, E ,Q + 1) − U(C, E ,Q) ≥ 0 can
be proved, given the holding cost of contents χ(·) ≡ 0, as

follows:
Un+1(C, E , Q)− Un+1(C, E , Q− 1)

≥ Hn(C, E , Q|A = a2)− Un(C, E , Q− 1|A = a2),

= Ia1=2 ·
{[
F (C, E , Q|A = 2)− F (C, E , Q− 1|A = 2)

]
+β

∑
C′∈C

pCC,C′
1∑
k=0

fai (k)
[
Un(C, E − δ,Q− 1 + k)

−Un(C, E − δ,Q− 2 + k)
]}

+(1− Ia1=2) ·
{[
F (C, E , Q|A = 0)− F (C, E , Q− 1|A = 0)

]
+β

∑
C′∈C

pCC,C′f
a
i (0)

[
Un(C, E , Q)− Un(C, E , Q− 1)

]}
,

≥ −ωhd[χ(Q)− χ(Q− 1)]
+β

∑
C′∈C

pCC,C′f
a
i (0)

[
Un(C, E , Q)− Un(C, E , Q− 1)

]
,

≥ −ωhd[χ(Q)− χ(Q− 1)].
(34)

When χ(·) ≡ 0, i.e., the holding cost of contents is zero or
neglected by the content source, Lemma 7 also holds for the
boundary condition Q+ 1 = Q. In summary, Lemma 7 holds
for all system states S ∈ S.
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